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S U M M A R Y  
Rayleigh waves excited by an impulsive force imbedded in a linear viscoelastic half-space are synthesized by applying 
an approximate inversion of the Fourier transform which yields reliable results. The method is general enough and can 
be applied to general models of viscoelasticity described by the Boltzmann superposition principle, with a relaxation 
or creep function given analytically or numerically in the time or frequency domain. Illustrations are given in cases of 
simple and complicated models of viscoelasticity. 

1. Introduction 

Only few works appear to deal with three-dimensional dynamic viscoelastic problems (two 
space variables and time variable) due to mathematical difficulties. See for example a review by 
Kolsky [1]. 

The problem of wave propagation in a viscoelastic half-space caused by an impulsive source 
was treated by Chao and Achenbach [2] for a three-parameter viscoelastic model, under the 
assumption of a constant Poisson ratio. More recently Tsai and Kolsky [3] studied both 
theoretically and experimentally the excited surface waves in a viscoelastic half-space caused by 
the impact of a steel ball. Abubakar [4] obtained expressions for the displacements due to a 
buried line source, by the application of the multiple saddle point approximation. 

In the present work we apply an approximate inversion of the Fourier transform based upon 
the Cooley and Tukey algorithm [5]. This method has proved to be very efficient and accurate 
in treating the problem of wave propagation from a spherical cavity in a viscoelastic medium 
[6]. This is generalized here in order to treat the more difficult case of Rayleigh wave propaga- 
tion in a viscoelastic half-space due to an impulsive vertical buried force. With this method of 
inversion we are able to handle any type of linear viscoelastic isotropic half-space having a 
relaxation or creep function which is given analytically or numerically in the time or frequency 
domain. 

After checking the accuracy of the inversion, the method is illustrated for a viscoelastic 
half-space of the Maxwell and standard linear solid types, and it is shown that a straight- 
forward generalization can easily be performed for a generalized Maxwell model containing 
a finite number of elements. This model can also be represented by a stress related to the strain 
according to linear differential operators with respect to time of finite orders. Next we illustrate 
it for the more general case of a network containing an infinite number of elements, which 
corresponds to a stress-strain relation having fractional time derivatives. As a last illustration 
we present Rayleigh waves in a viscoelastic half-space defined by a logarithmic creep function. 
This function has the property that it provides a fairly constant loss factor over a large range 
of frequency, a property which must be imposed according to observational and experimental 
results. In all these illustrations, the solution is compared with Rayleigh waves in an elastic 
half-space, and the resulting attenuation and dispersion are shown. The dispersion is also 
shown in plots of the particle motions (trajectories) resulting in the various models treated. 

The present method of solution can easily be applied to other related problems of interest. 
Thus it was recently shown by Moke [7] that a reinforced material with paralM fibers behaves 
in certain circumstances as a viscoelastic medium with an effective complex density. Similarly 
it was shown by Hudson [8] that the scattering of Rayleigh waves by inhomogeneities whose 
size is small compared with the wavelengths of the incident wave gives rise to an attenuation 
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caused by a certain viscoelastic law. This law implies that the moduli and density are complex 
quantities depending on the frequency in a particular manner. Although it is not obvious what 
is the meaning of complex density, the method presented here can formally handle with ease 
those viscoelastic laws as well as a density represented by a complex quantity depending on 
the frequency. 

2. Statement  and Formal Solution o f  the Problem 

Consider a viscoelastic isotropic half-space containing a buried vertical point force at depth h 
beneath the surface, see Fig. la, whose time dependence is given by f(t), commencing at time 

FREE SURFACE 

z 

{r,z) 

~ t  

(al (hi  

Figure 1 (a). Vertical force imbedded at depth h beneath the surface of a viscoelastic half-space; (b) Time variation 
of the source function f(t) given by (15). 

t = 0. The viscoelastic half-space is described by the general Boltzmann superposition principle, 
with the relaxation or creep functions given analytically or numerically in the time or t he  
frequency domain. 

The constitutive equations according to this principle are: 

f i ~? D(z)dz+2 Gz(t-z)~z~ij(z)dz (1) %(0 = ~ij C,1 ( t -  ~) 
- ~ o  - o 0  

where oij, ~ij are the stress and strain tensor components respectively, and G1 (t), G2 (t) are the 
relaxations function which are zero for t < 0. 3~j is the Kronecker delta and D = div u where u is 
the displacement vector. The initial conditions are: u=Ou/&=O at t=0,  representing a 
quiescent state at t =0. 

Equation (1) can be rewritten in the following form: 

in which the dots represent derivative with respect to argument, and ~1 (t), ~2 (t) are defined by: 

a,(t) = a , ( 0 ) { 1 - ~ i ( 0 } ,  i =  1, 2 (3) 

and therefore qq (t)= $2 (t)=0 at t=0.  In the perfectly elastic case G1, G2 are time-independent 
and reduce to the Lain0 constants 2, # respectively. A correspondence principle can be easily 
obtained from (2) by defining ~ = t - ,  and then extending the lower limit of integration to 
- Go obtaining: 

~i~ = G1 (0) D (t)6,~ + 2G 2 (0) ~ij (t) - G1 (0) 6i~ f ~_ ~ ~1 (4)D (r, t - ~)d~ 

f -2G2(0) ~ ~2(~)e~j(r, t -~)d~ (4) 
- c o  

and r = (x, y, z) is the vector of position. 
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Applying the Fourier transform with respect to t to (4) and using the convolution theorem 
we get : 

F [aij ] = G~ (0) (1 - F [~ 1] ) V [D] 6~j + 2G 2 (0) (1 - F [l~2 ] ) F (e,j] (5) 
where 

F [g (t) ] _=_ 0 (co ) ----t-~_ g(t)e-i~~ (6) 

Therefore we obtain in the Fourier transform domain the following correspondence principle 
between a perfectly elastic problem and the corresponding viscoelastic problem: 

2+--~G~(0)(i-F[~I] ) -  L(co) ) 
#+--~Gz(O)(1-F[@z] ) M(c~). ~ (7) 

The problem of a vertical force directed along the z-axis and buried within an elastic half-space 
has a cylindrical symmetry. Therefore all quantities are independent of the azimuthal angle 0 
of the cylindrical coordinates (r, 0, z) and the displacement vector components at the observation 
point (r, z = 0) are given for the elastic case by, see Pekeris [9] (with differem notations) 

fi, (r, 0, co) = -- f(co) f ~176 2v 1 v 2 e -  ~,h _ (2k 2 _ k22) e- ,~h k 2.I1 (kr)dk (8) 
2~u o Fo(k) 

fi~(r, O, co) = f(o~) ;.t ~ (2kZ-k2)e-~'h-2k2e-~h v~kdo(kr)dk" (9) 
2 ~  _o F0(k) 

Here: 
v, = (k2-k~) ~: (i = 1, 2) (10) 

k 2 = c02p/(2+2#),  k 2 = eo2P/# (11) 

V o (k) = (2k 2 - k~)2 _ 4k 2 (k 2 _ kS)5 (k z _ k2 z)5, (12) 

h is the depth of the source and p is the density. It is worthwhile to note that the generalization 
to vertical forces which are distributed continuously in a circular region is straightforward, 
see Miller and Pursey [10] for the corresponding expressions to (8) and (9). 

By replacing the Bessel function d, of order n in (8-9) by the Hankel functions of the first and 
second kind (H(. 1) + H~2))/2 and transforming the path of integration in the complex k plane [11], 
then the residue at the Rayleigh pole k o = 7k2 where Fo (ko)=0 yields the Rayleigh wave dis- 
placements 

~r - if(c~ [2vl v2 e-~lh-(2k2-kZ)e-V2h k2 H~2)(kr)] (13) 
2p F~ (k) k = ko 

~t~ = i f  (~ [ (2k2-k~)e- v'h- 2k2 e- v2h )] 
2# ~ (k) vl kH~o2)(kr (14) 

k=ko 

According to the correspondence principle (7) we replace the Lam6 constants 2, # in (10-14) in 
the case of a viscoelastic half-space by L(@, M (a~) respectively. Then (13-14) yield the surface 
displacements connected with Rayleigh waves caused by a buried vertical force in a viscoelastic 
half-space, specified by the relaxation functions (3). 

Two different cases arise in determining ko: 
(1) Poisson ratio a=O.5Gl(t)/[Gl(t)+G2(t)] is time-independent, then V is a constant 

independent of co. For example if G 1 (t)= G 2 (t) then 0-=0.25 and ? =0.5 (3 + , ]3 )  5. 
(2) Time-indepent Poisson ratio, 0-(t). In this case ? depends on ~o and must be computed for 

eyery frequency component by locating the root (generally complex) of Fo (k)=0 at that 
frequency. 

In all the illustrations given in the sequel we choose G~ (t)= Gz(t)=-G(t) although more 
general cases can be treated exactly in the same manner. 
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3. The Temporal Variation of the Source 

We consider a vertical point force buried below the free surface of the viscoelastic half-space 
with a time variation f ( t )  given by: 

f ( t )  = Z {A 2 [-P (t) ] - A 2 [-P (t - 2A) ] } (15) 
with 

p(t) = t2 H (t)/2 (16) 

where H (t) is the Heaviside step function, Z is an amplitude factor having the dimension of a 
force and A 2 is a second finite difference operator defined by: 

A 2 [p(t)] = [ p ( t ) - 2 p ( t - A ) + p ( t - 2 A ) ] / A  2 . (17) 

The parameter 4A is the duration of the pulse, see Fig. 1 (b). The Fourier transform of f ( t )  is 
given by : 

f(co) = 4Z sin o~A ( 1 -  cos coA)e-2i~ A 2 (18) 
and 

f(O) = 2ZA 

In all the illustrations given in this paper we choose 4A = 30 h/%, where c 2 = [GI(0) + 2G 2 (0)]/p. 
Similarly we define: c z = G2 (O)/p. All the displacements in these illustrations have the multi- 
plication factor Z/G  2 (0). 

4. Approximate Method of Inversion 

The inversion of the expressions (13-i4) for the horizontal and vertical displacements at z=O, 
back to the time domain is based upon a direct approximation of the inverse transform by a 
finite sum. For a real causal function, 9 (t)= 0 for t < 0, the inverse transform of (6) is given by 
[12]: 

9(0  = _2 Re [0(o))] cos e)tdco, t > 0 ,  (19) 
g 0 

and (19) is approximated by: 

9(tk) 2Ao~ N-1 - ~ Re[0(~%)] cos co, tk (20) 
7C n : 0  

w h e r e t k = k A t ,  k = 0 , . . . , K - 1  and og,=nAo~, n = 0 , . . . , N - 1  with 

At = 27z / (N-  1)Aco. (21) 

In (13-14) the angular frequency span ok N is divided into N equal increments A~, and the time 
span tK in (19) is divided into K equal increments At. We set N = K  which is a usual case for 
computing. 

We employ the Cooley and Tukey algorithm [-5] in evaluating (20). A straightforward 
numerical evaluation of (20) involves making K multiplications and additions for each of the 
K values of k, i.e. a total of K 2 operations. Thus the time of calculations is proportional to K z. 
The above algorithm reduces considerably the number of operations, allowing the computations 
to be done in a time proportional to K log K instead of K 2. This is of course a significant saving 
for large values of K. Actually the computer program based upon this procedure generates the 
displacements for all the range 0 < tk < t~ _ 1 in about halfa minute on the C.D.C. 6600 computer, 
for the case N = K = 2 1 3 .  

5. Checking the Accuracy of the Inversion 

Let us check the accuracy of the inversion as follows : 
(1) The recovery of the function f ( t )  given by (15) by applying the inversion procedure (20) 
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to (18). The correspondence between the analytical expression (15) and the numerical values 
obtained was excellent. The relative errors at the various values of t were less than 1% for 
N=213. 

(2) We examined the displacements obtained with several values of the angular frequency 
increments and different number of input points N (Fourier components), but such that the 
frequency span co N is kept constant, so that the time increment A t given by (21) remains constant 
too. In this way we checked the variations of the numerical values of the two displacement 
components in the case of a perfectly elastic half-space at the observation point r/h = 10, z = 0, 
in the time interval 20 < cp t/h < 40. 

We started with angular frequency increment h A o)/Cp = 0.0128, N = 28 and then we refined 
successively up to hAog/cv=4• 10 -4, N=213 where the solution showed no appreciable 
changes. We found that the maximum relative error in the above mentioned time interval was 
about 4 % when refining from 28 and 2 9, and it reduced to less than 1% when refining from 
212 to 213 Fourier components. Note that these slight changes are indistinguishable up to the 
scale of the plot. 

-In the following illustrations we employed N = 213 Fourier components in order to synthesize 
the Rayleigh waves, although one hundred components, starting at a reference frequency COo, 
were used in [-3] to compute the stress pulses. The need to such a large number of components 
is imposed by the requirement to obtain an accurate solution, especially when the relaxation 
function changes rapidly with time. 

Similar error checks were performed in a dissipative case, but these results will be reported 
in a later section. 

6. Maxwell and Generalized Maxwell Models 

Let us illustrate first the present method of solution for the simple models of one Maxwell 
element and a standard linear solid. The relaxation function G(t) for the Maxwell model is 
given by: 

G (t) = G (0) e -  tl,o (22) 

where to is a relaxation constant and G(O)=(cs/Cp) 2. In Fig. (2) the vertical and horizontal 

1.0 
r/h = I0 

J 
l [ l I l 
O 50 I00 ISO 0 

i " 1.0 

/j~_. 2-: 2; '22.22.:~.~Z 
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Figure 2. Vertical and horizontal displacements on the surface of a viscoelastic half-space of the Maxwell and standard 
linear solid type. The elastic case is represented by the solid line. 

displacements, connected with Rayleigh waves, on the surface of a viscoelastic half-space 
characterized by (22) with % t o / h =  100 containing a vertical point force are shown. The dis- 
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placements are given at distances r/h = !0, 30, 100. The solid curves represent the corresponding 
displacements in an elastic half-space. 

For the standard linear solid we choose the relaxation function: 

G (t) = G (0) (1 + e -t/to)/2. (23) 

Both (22) and (23) have the same value G (0) at t = 0, but G (t) in (23) tends to the constant value 
G(0)/2 at t ~  oe. The corresponding displacements for the standard linear solid are shown in 
Fig. (2). These displacements form a partial contribution to the complete solution which con- 
tains both body and Rayleigh waves. In the present case of the force of finite duration (15), the 
complete solution tends to zero for large times. As Rayleigh waves form the dominant contribu- 
tion to the complete solution for large distances (r/h ~ 1), we expect them to produce zero 
displacements at large times. This is well seen in Fig. (2) and the other Figures of this paper. 
On the other hand, for small distances Rayleigh waves are not the dominant part of the 
complete solution. Hence they do not need to tend to zero for large times. This again is clearly 
seen in the plot of vertical displacements for the small values of r/h. 

Whereas these curves show clearly the effect of attenuation, their shape is almost preserved. 
In order to exhibit the dispersion of Rayleigh waves as a result of the dissipation, the particle 
motions resulting by combining the vertical and horizontal displacements of Rayleigh waves 
are given at r/h= 100, z =0  in Fig. (3a). It is readily seen that the resulting particle motions have 
quite similar shapes in the both above three cases, and therefore the dispersion is not significant. 
On the other hand the impulsive excitation of the source yields a non-elliptical path with a 
cusp, in contradistinction with the case of harmonic Rayleigh waves where the path is retrograde 
elliptic. 

:= I.O r /h  =_100 1@]015 ~ 
~ , ~ / ~  ELASTIC ha/Cp,= O.O 

,~176176 

--Ur 1.0 ~Ur - O. ( Q ~ M A ~ ;  -0.5 1.0 LL ~ i  =0"02 

(a) o . 1 0 ~ ~ , ,  (c) 
j z, =o.I O. 5 

0.00 ~ U r  - 0 . 0 5 ~ 0 . 1 5  
- 0.05 

(b) 
Figure 3. Particle motion on the surface of a half-space of various viscoelastic types. 

So far we have illustrated the present technique to simple viscoelastic models, but the general- 
ization to more complicated models which consist of finite number of elements (springs and 
dashpots) can be easily treated in the same way (the demand to include more elements in the 
model is needed when dealing with a wider time or frequency range). Such a generalization was 
shown in [6], in the problem of a cavity imbedded in a viscoelastic medium, for a generalized 
Maxwell model whose relaxation function is given by: 

G (t) = Go + ~ Gj e-t/t~ (24) 
j = l  

with n = 8. 
In the next section we shall extend the analysis in order to treat a model which contains an 

infinite number of elements. / 
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7. A Ne twork  of  Infmite Number Elements  

The relaxation function of a generalized Maxwell model is given by (24). As stated before this 
model can be interpreted in terms of finite number of springs and dashpots. It can equivalently 
represented by a stress related to the strain by linear differential operators with respect to time 
of finite orders. Obviously both representations can be treated suitably by the present described 
method. 

Let us apply the present technique to an extended network containing an infinite number of 
elements. Such a model is given by Bland [13], and consists of a stress-strain relation which 
contains a fractional time derivative as follows: 

a=KD~,  0 ~ v _ < l .  (25) 

In this uniaxial relation K is a positive constant, and D v is a fractional time differentiation 
of real order v, defined by: 

D ~ k (t) = L ;  1 [pV L,  [k (t) ] ] (26) 

where Lp denotes the Laplace transform and iv is the transform parameter. The fractional 
integral according to (26) is given by: 

k (t) = f' ( t -  D o F(v) k(-c)dz (27) 
,1 

where F is the gamma function. 
When v = 0 we obtain back the perfectly elastic case, and when v = 1 we get the perfectly viscous 

case. The complex modulus appropriate to (25) is given by: 

Y(ico) = K( icoy  = K &  cos ~- + i sin . (28) 

Let us compute the Rayleigh waves response to a buried force in a viscoelastic half-space 
described by the present model, such that 

L(o) = M(co) = G(0)(ic0y, G(0) = (c J%)  2 (29) 

with L(~o), M(o)) defined by (7). 
In Fig. (4) the vertical and horizontal displacements are given for the two values v =0.1, 0.2. 

The corresponding displacements for an elastic half-space are also shown for comparison 
(v = 0). As can be expected the attenuation is more pronounced for the larger value of v, the 

r~h~lO LO r /h=30 0.[ ~ r / ~  

~i "~ ' -o.a 

- 2  :" -I.C 

-3 -2,0 -I.0 

I ~ l I I I l i I 
50 ~00 150 0 50 I00 150 I00 150 200 250 

2 ~ Cpt/~ ~ Cpt/h ~ cpt/h 

I 

i t "= . . . .  ~,~ . . . . .  0.0 ' = . . . . .  O0 _- ~-2. ~ .==~=._ .~ .  

- 1 0  5 
t,' = 0 .1  . . . .  

~ ' : 0 2  . . . . .  

Figure 4. Same as Fig. (2) for a model containing an infinite number of elements. 
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pulses are extremely broadened as a result of the dissipation. This broadening effect is more 
significant at the larger distances from the source. 

The particle motions of Rayleigh waves corresponding to these two values of v are shown in 
Fig. (3b). They show clearly the dispersion effect, since the trajectories are completely distorted 
as compared with the corresponding elastic case. 

8. Logarithmic Creep Function 

Let us consider a viscoelastic half-space whose dissipation is described by a logarithmic creep 
function J (t) given by: 

J(t) = J(0)  {1 + q~(t) } (30) 
with 

qS(t) = q log (1 +at) (31) 

where q is a non-dimensional constant and a is a parameter which has the dimension of a 
frequency. 

Observational and experimental results showed that real solids have a loss factor Q-1 (or 
the internal friction) which is quite constant over a wide range of frequencies, see Kolsky [14] 
and Knopoff and MacDonald [15]. It was shown by Lomnitz [16] that 1/Q connected with 
the creep function given by (30-31) remains relatively constant over a wide range oft0. For the 
explicit dependence of Q on e~ see Lomnitz [17]. 

In order to obtain the Rayleigh waves displacement in a viscoelastic half-space characterized 
by (30-31), the corresponding relaxation function G(t) must be constructed. This is easily 
accomplished according to the following relation between the creep and relaxation function: 

F [~  (t)] = F [q~ (t)]/(1 + F [~) (t)]) (32) 
and 

G(0) = l / J ( 0 ) .  

The Fourier transform of q~ (t) is given by: 

F [q~ (t)] = q e i~~ {i si (c~/a)- C,(m/a)} (33) 

where si, C i are the sine and cosine integral functions as defined by Abramovitz and Stegun 
[18]. Having F [ ~ ( t ) ] ,  L(co) and M(co) in (7) are accordingly determined, then the formal 
expressions for the displacements can easily inverted. 

The present case includes the transition from the creep function to the relaxation function, 

i 
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Figure 5. Same as Fig. (2) for the logarithmic creep model. 
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see eq. (32). Accordingly we compared the resulting displacements by applying the previously 
described successive refinements number of Fourier components, while keeping con constant. 
This comparison was performed at r/h= 10 with q =  1 and ha/cp=O.02, in the time interval 
20 < cp t/h < 40. We found that the maximum relative error between the two cases N = 212 and 
N = 2 t3 over all the mentioned time interval is less than 4 ~ ,  which is larger than the resulting 
relative error (1%) in the corresponding elastic case reported before. But as in the previous case 
it is still up to the scale of the plot impossible to distinguish between the two compared curves. 
We can conclude therefore that the inversion procedure, when it also includes the transition 
(in the frequency domain) from the creep to the relaxation function, still yields reliable results. 

In Fig. (5) the displacements associated with Rayleigh waves are given for q = 1 and two 
values of the parameter a: ha/cp=O.O05, 0.02, together with the perfectly elastic case (a= 0) 
shown for comparison. It is seen that the dissipative effect increases with a, as can be expected. 
The particle motion for these values of a are displayed in Fig. (3c) at the observation point 
r/h = 100, showing clearly the effect of dispersion. The broadening effect can easily be seen in 
Fig. (5), but it is less pronounced as in the previous model shown in Fig. (4). 
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